a2 United States Patent

Kolathur et al.

US009058184B2

US 9,058,184 B2
Jun. 16, 2015

(10) Patent No.:
(45) Date of Patent:

(54) RUN TIME GENERATION AND
FUNCTIONALITY VALIDATION OF DEVICE
DRIVERS

(71) Applicant: Vayavya Labs Private Limited,
Belgaum (IN)

(72) Inventors: Venugopal Kolathur, Belgaum (IN);
Ravindragouda Kalagouda Patil,
Belgaum (IN); Parag Naik, Bangalore
(IN)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 13 days.

(21) Appl. No.: 14/026,270

(22) Filed: Sep. 13, 2013
(65) Prior Publication Data
US 2014/0075053 Al Mar. 13, 2014
(30) Foreign Application Priority Data
Sep. 13,2012 (IN) .ooveeeivcrcecnnnne 3793/CHE/2012
(51) Imt.ClL
GO6F 3/00 (2006.01)
GO6F 13/28 (2006.01)
GO6F 5/00 (2006.01)
GO6F 13/00 (2006.01)
GO6F 9/44 (2006.01)
GO6F 9/45 (2006.01)
GO6F 11/36 (2006.01)
(52) US.CL
CPCcccee. GO6F 9/4411 (2013.01); GO6F 8/447

(2013.01); GO6F 11/3672 (2013.01)
(58) Field of Classification Search
CPC GOGF 3/0639; GOGF 3/1254; GOGF 9/445

NETWORK
110 DEVICE

OS/RTE
USER SYSTEM HARDWARE
- DEVICE
7
(T 106
L
3 104 Q™

102

CONFIGURATION
108 FILE

USPC oo 710/10, 16, 26, 54, 104
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
2003/0149753 Al*

2004/0003135 Al*
2004/0123305 Al*

82003 Lamb ..o, 709/223
1/2004 Moore 709/321
6/2004 Kimetal. 719/321
2007/0088890 Al* 4/2007 Wieland et al. 710/269
2010/0169512 Al1* 7/2010 Mattonetal. 710/16
2011/0283025 Al* 11/2011 Maxwell etal. 710/16

* cited by examiner

Primary Examiner — Ernest Unelus

Assistant Examiner — Getente A Yimer

(74) Attorney, Agent, or Firm — The Law Office of Austin
Bonderer, PC

(57) ABSTRACT

A method of generating and validating a device driver for a
hardware device is provided. The method include (i) dynami-
cally querying the hardware device for adevice programming
specification, (ii) dynamically querying a run time environ-
ment for a run time specification, (iii) obtaining the device
programming specification that is specific to the hardware
device, (iv) obtaining the run time specification that is specific
to the hardware device and the run time environment, (v)
dynamically synthesizing a device driver, by a device driver
generation tool to obtain a synthesized device driver, (vi)
automatically testing, by the device driver generation tool, the
synthesized device driver based on a device class of the hard-
ware device, and (vii) automatically evaluating, by the device
driver generation tool, a performance of the synthesized
driver with respect to standard performance parameters for
the device class of the hardware device for validating the
synthesized device driver.

19 Claims, 9 Drawing Sheets

" NETWORK
34 DEVICE
K

OS/RTE e el
110

USER SYSTEM HARDWARE
DEVICE

2 (106

102 CONFIGURATION
108 FILE

U.S. Patent Jun. 16, 2015 Sheet 1 of 9 US 9,058,184 B2

110—] NETWORK

DEVICE
OS/RTE
USER SYSTEM HARDWARE
|) DEVICE
104
102 CONFIGURATION
FILE
NETWORK
DEVICE
OS/RTE
USER SYSTEM }‘/ HARDWARE
|) DEVICE
102 104 CONFIGURATION
108 —— FILE
FIG. 1B
NETWORK
DEVICE
OS/RTE Generate 116/
driver,
USER SYSTEM compile, HARDWARE
| validate, DEVICE
] deploy and \
(generate 106
104 reports
102 CONFIGURATION
FILE

{

108

FIG. 1C

U.S. Patent Jun. 16, 2015 Sheet 2 of 9 US 9,058,184 B2

S/RTE NETWORK
— >0 110~ DEVICE
Query device for
USER SYSTEM DPS and extract
DPS HARDWARE
L]) Iq\ - DEVICE
2 (\‘I 06
104
102 CONFIGURATION
FILE
\108
FIG. 2A
—>OS/RTE 110~ NETWORK
Query RTE And DEVICE
extract RTS
USER SYSTEM
HARDWARE
_|) | DEVICE
2 (\1 06
104
102 CONFIGURATION
108 —— FILE
FIG. 2B
NETWORK
DEVICE
Generate 1 1{
driver,
USER SYSTEM compile, HARDWARE
| validate, DEVICE
] deploy and \
2 ({ generate 106
104 reports
102 CONFIGURATION
FILE
108

FIG. 2C

U.S. Patent

Jun. 16, 2015 Sheet 3 of 9 US 9,058,184 B2
S
—>OS/RTE oS o0 NETWORK
Query RTE And DEVICE
extract RTS 2
USER SYSTEM|/ 110
)
2 (
104
102 103 —| CONFIGURATION
FILE
FIG. 3A
Display URL of DPS stored on
cloud/a remote server and wait till
OS/RTE user provides it
USER SYSTEM / NETWORK
| }‘/ DEVICE
2 (110
104
102 108 —| CONFIGURATION
FILE
FIG. 3B
NETWORK
DEVICE
OS/RTE Generate 2
USER SYSTEM driver, 110
compile,
| validate,
) deploy and 108
2 (generate 2
104 reports
102

CONFIGURATION
FILE

FIG. 3C

US 9,058,184 B2

Sheet 4 of 9

Jun. 16, 2015

U.S. Patent

Vv "Old

AV A EINE
40O TYNH3LNI S1d/5dd
d34do1s

1VYNS3LX3 TVNASLNI

Q

d3adinOdd
80¥ —~— JUV ATHL 11IL
ANV (S1d a3dino3ay

41) Sda 40 NOILYOOT
2y~ _ Sid1noavdld dnNv tv6m< H3SN WHOANI
Sdd 1N0av IDIAIA AYIND
S3IA
¢391A30 .
. O IATIVOOT I1aVIIVAY

3I2IA3A IHL SI S1d ANV Sdd 34V

ov

dn 100d W31SAS

0y —~— /NOILVAILOY 3A00 10049/LINI WA1SAS

US 9,058,184 B2

Sheet 5 of 9

Jun. 16, 2015

U.S. Patent

gy 'Old

¢Sd0dd4

0Zy —~—

JIAAIHA JLVAITVA

a

-

d3AIAA FZISTHLNAS

>

JOVHOLS T¥YNY31Xd
NOYd4 S14d/Sdd SS300V

—— 8l

©

N A

Oly

O,

9Ly —~—

314 INOYH4 S1d AHJOWNEIN
JOIAIA NOH4 Sdd 10vd1X3

US 9,058,184 B2

Sheet 6 of 9

Jun. 16, 2015

U.S. Patent

v "OId

9cv

1d0d3d
d3SN JLVHINTO ANV
NOILVAITVA ALITYND Od

— ¢y

d3AIHA AO1d3d

d3AIA d31034400
ATIVANYIN 139

!

YTy ~~—
ON
¢SHOHY3
S3A
cey
¥3Aa .
30IA3Q ALVAIVAIY
LOTHIOD ez
-OLNY LdWALLY

U.S. Patent Jun. 16, 2015 Sheet 7 of 9 US 9,058,184 B2

DYNAMICALLY QUERYING A HARDWARE DEVICE FOR A 502
DEVICE PROGRAMMING SPECIFICATION [~

|

DYNAMICALLY QUERYING A RUN TIME ENVIRONMENT
FOR A RUN TIME SPECIFICATION —~—504

|

OBTAINING THE DEVICE PROGRAMMING
SPECIFICATION THAT IS SPECIFIC TO THE HARDWARE [—~— 506
DEVICE

|

OBTAINING THE RUN TIME SPECIFICATION THAT IS
SPECIFIC TO THE HARDWARE DEVICE ———-508

|

DYNAMICALLY SYNTHESIZING A DEVICE DRIVER TO
OBTAIN A SYNTHESIZED DEVICE DRIVER —~~—-510

|

TESTING THE SYNTHESIZED DEVICE DRIVER BASED ON [~—512
A DEVICE CLASS OF THE HARDWARE DEVICE

|

EVALUATING A PERFORMANCE OF THE SYNTHESIZED

DRIVER WITH RESPECT TO STANDARD PERFORMANCE

PARAMETERS FOR THE DEVICE CLASS OF THE —~—514

HARDWARE DEVICE FOR VALIDATING THE SYNTHESIZED
DEVICE DRIVER

FIG. 5

U.S. Patent

Jun. 16, 2015

Sheet 8 of 9

O

RY 6

MEMO

<t
(o)

US 9,058,184 B2
3
O
[
O
o)
o)
Ll
Q
O
[
o
[eo]
3
i ©
< ¢
E TR
wn

6

Q|

DISPLAY 6

US 9,058,184 B2

Sheet 9 of 9

Jun. 16, 2015

U.S. Patent

L Old
/L
vz A&Wv
S
1z Bl
mml\lAMHHHu|||| N3LdYay y3ldvav ﬁHHHWl\;mF
IdSIa JOV4YILNI

y3sn Nr

| | | || || || |
0¢ _ —_ — — —
g7 a7 7 o7 o7

y31dvay

SNOLLYOINNWINOD d31dvav o/l NOY vy NdO Ndo

(14
AHOMLEN

€l

—

US 9,058,184 B2

1
RUN TIME GENERATION AND
FUNCTIONALITY VALIDATION OF DEVICE
DRIVERS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to Indian patent applica-
tion no. 3793/CHE/2012 filed on Sep. 13, 2013, the complete
disclosure of which, in its entirely, is herein incorporated by
reference.

BACKGROUND

1. Technical Field

The embodiments herein generally relate to device driver
generation for a hardware device, and, more particularly, to a
run time generation and functionality validation of device
drivers using a high level descriptions of the hardware device
and software environment that embedded in the hardware
device and a run time environment.

2. Description of the Related Art

Typically any software running on a hardware/platform
exercises the features of the hardware by way of device driv-
ers. A device driver generally refers to a software code (group
of software instructions), which enables a computing device
(e.g., acomputer system) to interface with a hardware device
(e.g., aprinter, a modem, a network controller card, etc.). The
device driver provides appropriate interfaces enabling vari-
ous software modules (e.g., user applications, operating sys-
tem components, etc.) executing in the computing device (or
hardware components in the computing device) to communi-
cate with and/or to control the hardware device.

Device driver code is different for different computing
devices generally due to differences in hardware and software
characteristics among computing devices. For example, dif-
ferent operating systems (or its absence) may require differ-
ent software codes for operation as a device driver in the
corresponding computing devices. Similarly, having different
hardware (devices, registers, etc.) characteristics may also
require different software codes.

Device driver for a device is usually provided by one of the
following means (i) sometimes written as part of applications,
(ii) supplied as a standard component of an Operating Sys-
tem, (iii) written as a software component by a developer
when he/she has a reference hardware platform and the run
time environment. Typically, device driver writers use the
description of the device features that are usually provided in
English. This leads to ambiguity which results in quite a few
to and fro between the hardware and software developers.
There are a large number of combinations of different com-
puting devices and operating environments (hardware and
software characteristics). Since the information needed to
write a device driver for a specific hardware device and/or
operating system typically has to be obtained manually, it is
cumbersome to write device drivers for these various combi-
nations.

SUMMARY

In view of the foregoing, an embodiment herein provides a
method of generating and validating a device driver for a
hardware device. The method includes (i) dynamically que-
rying the hardware device for a device programming specifi-
cation, (ii) dynamically querying a run time environment for
a run time specification, (iii) obtaining the device program-
ming specification that is specific to the hardware device, (iv)

10

15

20

25

30

35

40

45

50

55

60

2

obtaining the run time specification that is specific to the
hardware device and the run time environment, (v) dynami-
cally synthesizing a device driver by a device driver genera-
tion tool to obtain a synthesized device driver, (vi) automati-
cally testing by the device driver generation tool the
synthesized device driver by the device driver generation tool
based on a device class of the hardware device, and (vii)
automatically evaluating a performance of the synthesized
driver with respect to standard performance parameters for
the device class of the hardware device for validating the
synthesized device driver. The device driver is specific to the
hardware device and is generated based on the device pro-
gramming specification and the run time specification.

The method may further include regenerating the synthe-
sized device driver until no further errors are detected. The
method may further include evaluating a quality of the syn-
thesized device driver based on at least one of (a) a size of
instructions associated with the device programming specifi-
cation and the run time specification, and (b) a performance of
the instructions. The method may further include generating
a quality report of the synthesized device driver that is specific
to the hardware device. The device programming specifica-
tion may be stored in the hardware device and the run time
specification may be stored in the run time environment of the
computing device.

The method may further include obtaining a device obtain-
ing a storage location of (a) the device programming specifi-
cation based on the device ID and the vendor ID that is
specific to the hardware device, and (b) the run time specifi-
cation based on the hardware device and the run time envi-
ronment. The method may further include obtaining (a) the
device programming specification, and (b) the run time speci-
fication from an external storage device that is communicat-
ing with the computing device.

The method may further include providing at least one
uniform resource locator for downloading the device pro-
gramming specification. The device programming specifica-
tion and the run time specification may be stored in at least
one of (i) the computing device, (ii) the external storage
device that is connected to the computing device, and (iii) a
remote server that is in communication with the computing
device.

In another aspect, a system for generating and validating a
device driver for a hardware device is provided. The system
include a computing device that include (a) at least one of (i)
an operating system and (ii) a run time environment, (b) a
device driver generation tool that generates the device driver
for the hardware device, (c) a memory unit that stores (a) a
database, and (b) a set of instructions, and (d) a processor that
executes the set of instructions include (i) dynamically que-
rying the hardware device for a device programming specifi-
cation, (i) dynamically querying the run time environment for
a run time specification, (iii) obtaining the device program-
ming specification that is specific to the hardware device, (iv)
obtaining the run time specification that is specific to the
hardware device and the run time environment, (v) dynami-
cally synthesizing a device driver by the device driver gen-
eration tool to obtain a synthesized device driver, (vi) auto-
matically testing, by the device driver generation tool, the
synthesized device driver based on a device class of the hard-
ware device, and (vii) automatically evaluating, by the device
driver generation tool, a performance of the synthesized
driver with respect to standard performance parameters for
the device class of the hardware device for validating the
synthesized device driver.

The device driver is specific to the hardware device and is
generated based on the device programming specification and

US 9,058,184 B2

3

the run time specification. The set of instructions may further
include regenerating the synthesized device driver until no
further errors are detected. The set of instructions may further
include evaluating a quality of the synthesized device driver
based on at least one of (a) a size of instructions associated
with the device programming specification and the run time
specification, and (b) a performance of the instructions. The
set of instructions may further include generating a quality
report of the synthesized device driver that is specific to the
hardware device. The device programming specification may
be stored in the hardware device and the run time specifica-
tion may be stored in the run time environment of the com-
puting device. The set of instructions may further include
obtaining a storage location of (a) the device programming
specification based on a device ID and a vendor ID that is
specific to the hardware device which is obtained from a
configuration file, and (b) the run time specification based on
the hardware device and the run time environment.

The set of instructions may further include obtaining (a)
the device programming specification, and (b) the run time
specification from an external storage device that is commu-
nicating with the computing device. The set of instructions
may further include providing at least one uniform resource
locator for downloading the device programming specifica-
tion. The device programming specification and the run time
specification may be stored in at least one of (i) the computing
device, (ii) the external storage device that is connected to the
computing device, and (iii) a remote server that is in commu-
nication with the computing device.

In yet another aspect, a method of generating and validat-
ing a device driver for a hardware device is provided. The
method include (i) activating a boot code for a computing
device, (i) obtaining (a) information associated with at least
one hardware device that is connected to the computing
device, and (b) information associated with a hardware device
for which a device driver is not present in the run time envi-
ronment, (iii) obtaining a device ID, and a vendor ID from a
configuration file, (iv) obtaining a storage location of (a) a
device programming specification, and (b) a run time speci-
fication, (v) dynamically querying (i) the hardware device for
the device programming specification, and (ii) the run time
environment for the run time specification, (vi) obtaining the
device programming specification that is specific to the hard-
ware device, (vii) obtaining the run time specification that is
specific to the hardware device, (viii) dynamically synthesiz-
ing a device driver to obtain a synthesized device driver, (ix)
testing the synthesized device driver based on a device class
of the hardware device, and (x) evaluating a performance of
the synthesized driver with respect to standard performance
parameters for the device class of the hardware device for
validating the synthesized device driver. The computing
device includes at least one of (i) an operating system, and (ii)
a run time environment. The device driver is specific to the
hardware device and is generated based on the device pro-
gramming specification and the run time specification.

In further aspect, an embodiment herein provides a method
of generating and validating a device driver for a hardware
device. The method includes (i) dynamically querying the
hardware device for a device programming specification, (ii)
dynamically querying a run time environment for a run time
specification, (iii) obtaining the device programming speci-
fication that is specific to the hardware device, (iv) obtaining
the run time specification that is specific to the hardware
device and the run time environment, and (v) dynamically
synthesizing a device driver by a device driver generation tool
to obtain a synthesized device driver.

30

40

45

4

These and other aspects of the embodiments herein will be
better appreciated and understood when considered in con-
junction with the following description and the accompany-
ing drawings. It should be understood, however, that the fol-
lowing descriptions, while indicating preferred embodiments
and numerous specific details thereof, are given by way of
illustration and not of limitation. Many changes and modifi-
cations may be made within the scope of the embodiments
herein without departing from the spirit thereof, and the
embodiments herein include all such modifications.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments herein will be better understood from
the following detailed description with reference to the draw-
ings, in which:

FIG. 1A through FIG. 1C illustrates a block diagram for
generating a device driver for an existing hardware device
according to an embodiment herein;

FIG. 2A through FIG. 2C illustrates a block diagram for
generating a device driver for the existing hardware device
when the device programming specification is in the hard-
ware device and a run time specification is in a run time
environment of the computing device of FIG. 1A-1C accord-
ing to an embodiment herein;

FIG. 3A through FIG. 3C illustrates a block diagram for
generating a device driver for the primary network device of
FIG. 1A-1C when the device programming specification is
not available for the network device according to an embodi-
ment herein; and

FIG. 4A through FIG. 4C is a flow chart illustrating a
method of generating a device driver for the hardware device
and testing the device driver for functionality on the comput-
ing device using the device driver generation tool of FIG.
1A-1C according to an embodiment herein;

FIG. 5 is a flow chart illustrating a method of generating a
device driver for the hardware device and testing the device
driver for functionality on the computing device using the
device driver generation tool of FIG. 1A-1C according to an
embodiment herein;

FIG. 6 illustrates a schematic diagram of the hardware
device of FIG. 1A-1C to perform any one or more of the
methodologies herein, according to an embodiment herein;
and

FIG. 7 illustrates a schematic diagram of a computer archi-
tecture used in accordance with the embodiments herein.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

The embodiments herein and the various features and
advantageous details thereof are explained more fully with
reference to the non-limiting embodiments that are illustrated
in the accompanying drawings and detailed in the following
description. Descriptions of well-known components and
processing techniques are omitted so as to not unnecessarily
obscure the embodiments herein. The examples used herein
are intended merely to facilitate an understanding of ways in
which the embodiments herein may be practiced and to fur-
ther enable those of skill in the art to practice the embodi-
ments herein. Accordingly, the examples should not be con-
strued as limiting the scope of the embodiments herein.

As mentioned, there remains a need for a device driver
generation tool to generate a device driver and test the device
driver for functionality on the go using a high level descrip-
tion of a hardware device and software environment embed-
ded in the hardware device. The embodiments herein achieve

US 9,058,184 B2

5

this by providing a device driver generation tool generates,
synthesizes and deploys the device driver. During the synthe-
sis-deployment phase, the device driver is validated by
attempting for auto-correction to identify and fix the errors.
The ability of the device driver generation tool to attempt for
auto-correction eliminates, to some basic level the need of
user intervention to correct any errors. The device driver
generation tool further generates report indicating a quality of
the device driver. The user gets user manual regarding the
APIs provided by the device driver thus helping out in appli-
cation development. This tool eases the process both in terms
of effort and time for porting operating systems on a platform
since now the porting has to be done only for the processor
and all the drivers will be automatically generated. Referring
now to the drawings, and more particularly to FIG. 1A
through FIG. 7, where similar reference characters denote
corresponding features consistently throughout the figures,
there are shown preferred embodiments.

FIG. 1A through FIG. 1C illustrates a block diagram for
generating a device driver for an existing hardware device
(which is not the primary network device of the computing
device) according to an embodiment herein. The block dia-
gram includes a computing device 102 having a device driver
generation tool 104, the hardware device 106 having a con-
figuration file 108, and a network device 110. The hardware
device 106 is not a primary network device, in one example
embodiment. The computing device 102 has an operating
system or a run time environment (RTE). The DPS is not
embedded in the hardware device 106 and the RTS is not
present in the operating system (e.g., the run time environ-
ment (RTE)), in one example embodiment. The user provides
a configuration file that includes a device ID and a vendor ID.
The device driver generation tool 104 reads the configuration
file (as shown in FIG. 1A) and downloads an appropriate
device programming specification (DPS) and run time speci-
fication (RTS) from the external storage as shown in FIG. 1B.
The external storage may be on a dedicated server, or stored
ona cloud, or on an external hard disk, in one example. In one
embodiment, the computing device 102 may be a smart
phone, a tablet PC, a laptop, a desktop, and an ultra-book. The
device driver generation tool 104 then generates the device
driver for the existing hardware device, validates, deploys the
device driver and generates reports as shown in FIG. 1C.

FIG. 2A through FIG. 2C illustrates a block diagram for
generating a device driver for the existing hardware device
when the DPS is in the hardware device 106 and the RTS is in
the RTE of the computing device 102 of FIG. 1A-1C accord-
ing to an embodiment herein. The device driver generation
tool 104 receives a device programming specification (em-
bedded in the hardware device 106) by querying the hardware
device 106 in one embodiment. For example, the device pro-
gramming specification (DPS) is embedded in the hardware
device 106 when the hardware device 106 provides an inter-
nal memory and one or more registers with one or more byte
size each at predefined locations.

In one embodiment, the hardware device 106 provides
approximately 50 KB internal memory, three registers of 4
bytes size each at offset 0, 4 and 8. The register at location 0
may have 0x766C616273 as a default value. The register at
the offset 4 may have a size of the DPS file that is stored in the
hardware device memory and then the register at offset 8
provide access to the internal memory containing a com-
pressed version of DPS. In an example embodiment, when the
device driver generation tool 104 may first read register at
offset 0 of the hardware device. If the value read is
0x766C616273, the device driver generation tool 104 may
read the value stored in the register at offset 4 to determine

5

10

15

20

25

30

35

40

45

50

55

60

65

6

number of byte to be read for obtaining a complete DPS
stored in the internal memory of the hardware device. The
device driver generation tool 104 may proceed to read the
number of bytes read from register at offset 8. The device
driver generation tool 104 may proceed to decrypt and
uncompressed DPS may be generated.

Similarly, the device driver generation tool 104 receives the
run time specification (embedded in the run time environment
that is executed on the computing device 102) by querying the
run time environment installed on the computing device 102.
In one embodiment, the run time specification may be embed-
ded (e.g., stored or bundled) within the runtime environment
(e.g., an operating system) during the production process. For
example, The operating system may have a specific directory
at a root level of a file system (e.g., In case of Al operating
system is C:\ABC and in case of A2 operating system is
CAXY?Z). The device driver generation tool 104 may consider
a device id (either by querying the hardware device 106 or by
obtaining information from a configuration file). The device
driver generation tool 104 searches the ABC folder to check if
an RTS corresponding to the device id is present in the direc-
tory. If the RTS is present the device driver generation tool
104 may proceed to uncompress it. If the RTS is not present
the device driver generation tool 104 may proceed to obtain
from the internet (either from a server or from the cloud) and
uncompress it.

This scenario enables an end user (e.g., a customer or a
person of ordinary skill in the art) to generate a device driver
for the hardware device 106 using the device driver genera-
tion tool 104 (which may be executed in the computing device
102). This further eliminates the need of downloading the
device driver from the internet. For example,

The device driver generation tool 104 queries the hardware
device 106 for the DPS and extracts the DPS from the hard-
ware device as shown in FIG. 2A. Similarly, the device driver
generation tool 104 queries the run time environment (RTE)
and extracts the run time specification (RTS) from the run
time environment (RTE) as shown in FIG. 2B. The device
driver generation tool 104 then generates the device driver for
the existing hardware device, validates, deploys the device
driver and generates reports as shown in FIG. 2C.

FIG. 3A through FIG. 3C illustrates a block diagram for
generating a device driver for the primary network device 110
of FIG. 1A-1C when the DPS is not available for the network
device 110 according to an embodiment herein. In one
embodiment, the device driver generation tool 104 queries the
network device 110 to obtain the device ID and vendor ID as
shown in FIG. 3A. For example, the network device 110 is a
primary network device of the computing device 102. Hence,
the device driver generation tool 104 cannot access and use
the network device 110 to obtain the DPS. However, one or
more URLs are displayed to the user from which the DPS can
be downloaded. The URL of the DPS stored on a remote
server is displayed to the user as shown in FIG. 3B. The device
driver generation tool 104 waits until the user provides the
target location for the DPS. Similarly, the device driver gen-
eration tool queries the RTE for the RTS as shown in FIG. 3A.
Upon obtaining the DPS and the RTS, the device driver gen-
eration tool 104 then generates the device driver for the net-
work device 110, validates, deploys the device driver and
generates reports.

FIG. 4A through FIG. 4C is a flow chart illustrating a
method of generating a device driver for a hardware device
and testing the device driver for functionality on the comput-
ing device 102 using the device driver generation tool 104 of
FIG. 1A-1C according to an embodiment herein. In step 402,
boot code for a computing device is activated. In step 404,

US 9,058,184 B2

7

check whether the hardware device is a primary network
device. If the hardware device is the primary network device,
then it is checked whether a device program specification
(DPS) and a run time specification (RTS) are available locally
on the computing device 102, in step 406. If the DPS and the
RTS are not available locally on the computing device 102, a
user associated with the computing device 102 is informed
about the location of the DPS (and if required RTS), in step
408. In one embodiment, the device driver generation tool
prompts the user the location ofthe DPS and the RTS and how
to obtain the externally stored DPS and/or RTS.

In step 410, the device driver is generated and synthesized
for the hardware device based on the DPS and the RTS. Inone
embodiment, the device driver generation tool 104 dynami-
cally synthesis the device driver by detecting and querying of
the hardware device after RTE/Operating system boot up. If
the DPS and RTS are available locally, then the device driver
is generated and synthesized for the hardware device based on
the DPS and the RTS without having to perform the step 408.

If the hardware device is not the primary network device,
then the DPS are queried in the hardware device 106 and the
RTS are queried in the run time environment (RTE) 104, in
step 412. In one embodiment, then the DPS and the RTS are
dynamically queried for in the hardware device and in the run
time environment (RTE) respectively. In step 414, it is
checked whether the DPS and the RTS are stored (i) internally
in the hardware device or (i) externally on a storage device or
on a remote server. If the DPS and the RTS are stored inter-
nally in the hardware device, the DPS and the RTS are
extracted in step 416, and the step 410 is performed. If the
DPS and/or the RTS are stored externally on the storage
device or on the remote server, then the DPS and/or the RTS
are accessed from the storage device or from the remote
server in step 418, and the step 410 is performed.

In step 420, the device driver is validated. In one embodi-
ment, validation of the synthesized device driver is performed
when the synthesized device driver is executed on the hard-
ware device. In one embodiment, the device driver generation
tool 104 automatically validates the functionality of the syn-
thesized device driver by executing it on the hardware device
106 to detect possible defects, evaluates the device driver
qualitatively in terms of size of code, performance of the code
etc., and performs a conformance test to ensure that the device
driver adheres to the conformance criteria as required by the
RTE/Operating system like that of WHQL..

In step 422, it is checked whether there are any errors in the
device driver. If there are no errors in the device driver, then a
quality check is performed and a report is generated in step
424. The report helps the application writer in using the
device driver by providing information about the APIs pro-
vided by the device driver. In step 426, the device driver is
deployed. If there are errors in the device driver, the device
driver generation tool attempts for auto-correction, in step
428. In step 430, the device driver generation tool revalidates
the device driver after performing auto-correction. In one
embodiment, in case of error detection during validation, the
device driver generation tool 104 attempts for automatic error
correction using standard observation debug points that have
been already inserted in the hardware device.

In step 432, it is checked whether there are any more errors
in the device driver. If there are no errors in the device driver
then the step 426 is performed. Else, if there are errors, the
device driver may be manually corrected in step 434, and the
step 420 may be performed. In one embodiment, if the device
driver generation tool 104 detects any problems during the
validation phase, it will attempt to correct the problems and
report the pass or failure of the device driver generation

10

20

25

30

35

40

45

50

55

60

65

8

process. Based on this report, the user can then attempt to do
any manual corrections and re-run the device driver genera-
tion tool 104 based on a request received and/or displayed on
a display of the computing device 102 by the device driver
generation tool 104.

FIG. 5 is a flow chart illustrating a method of generating a
device driver for the hardware device and testing the device
driver for functionality on the computing device using the
device driver generation tool of FIG. 1A-1C according to an
embodiment herein. In step 502, a hardware device is
dynamically queried for a device programming specification.
In one embodiment, the device driver generation tool 104
queries the hardware device for the device programming
specification. In step 504, a run time environment is dynami-
cally queried for a run time specification. In one embodiment,
the device driver generation tool 104 queries the run time
environment for the run time specification. In step 506, the
device programming specification that is specific to the hard-
ware device is obtained. In step 508, the run time specification
that is specific to the hardware device is obtained.

In step 510, a device driver is dynamically synthesized to
obtain a synthesized device driver based on the device pro-
gramming specification and the run time specification. In step
512, the synthesized device driver is tested based on a device
class of the hardware device. For example, the synthesized
device driver is deployed tested based on the device class
(e.g., enumeration and file copy for USB memory storage
device or ping for network device).

In step 514, a performance of the synthesized device driver
is evaluated with respect to standard performance parameters
for the device class of the hardware device for validating the
synthesized device driver. For example, performance of the
synthesized driver is evaluated using standard test suites and
a report is generated. The report may include standard
expected performance for each device class and version (USB
2.0 devices performance will be less that of USB 3.0 devices
or in case of Ethernet cards a 100 Mbps device will perfor-
mance will be less than that of a 1 Gbps device which in turn
will perform worse than a 10 Gbps device. Hence the database
may include expected performance for each and every varia-
tion. In one embodiment, standard size of device driver for
different device classes may be stored and the size of the
synthesized device driver may be compared against the stan-
dard expected device driver size stored in a database using a
device class and a device id as key to search in the database.

In one embodiment, the synthesized device driver is regen-
erated until no further errors are detected. For example, when
the test fails for the synthesized device driver, the synthesized
device driver is regenerated with access to standard observa-
tion debug points (which are not usual device registers). The
standard observation debug points may allow the driver
access and display a actual signal values/status at various pins
and buses in the computing device (what is the signal value at
the interrupt pin(s) of the device?).

In one embodiment, a quality of the synthesized device
driver is evaluated based on one or more (i) a size of instruc-
tions associated with the device programming specification
and the run time specification, and (ii) performance of the
instructions. In one embodiment, a quality report of the syn-
thesized device driver that is specific to the hardware device is
generated.

For example, the device programming specification is
obtained from the hardware device and the run time specifi-
cation is obtained from the run time environment of the com-
puting device when the device programming specification is

US 9,058,184 B2

9

embed within the hardware device. Similarly, the run time
specification is embed within the run time environment of the
computing device.

In another example embodiment, a device ID and a vendor
ID that is specific to the hardware device is obtained. A
storage location of (a) the device programming specification,
and (b) the run time specification is obtained based on the
device ID and the vendor ID that is specific to the hardware
device. Then automatically the device programming specifi-
cation and (b) the run time specification are obtained from an
external storage device that is communicating with the com-
puting device.

In one embodiment, at least one uniform resource locator is
provided for downloading the device programming specifi-
cation. In one embodiment, the device programming specifi-
cation and the run time specification are stored in at least one
of' (i) the computing device, (ii) an external storage device that
is connected to the computing device, and (iii) a remote server
that is in communication with the computing device.

FIG. 6 illustrates a schematic diagram of the hardware
device 106 of FIG. 1A-1C having an a memory 602 having a
set of computer instructions, a bus 604, a display 606, a
speaker 608, and a processor 610 capable of processing a set
of instructions to perform any one or more of the methodolo-
gies herein, according to an embodiment herein. The proces-
sor 610 may also enable digital content to be consumed in the
form of video for output via one or more displays 606 or audio
for output via speaker and/or earphones 608. The processor
610 may also carry out the methods described herein and in
accordance with the embodiments herein.

Digital content may also be stored in the memory 602 for
future processing or consumption. The memory 6602 may
also store program specific information and/or service infor-
mation (PSI/SI), including information about digital content
(e.g., the detected information bits) available in the future or
stored from the past. A user of the hardware device 106 may
view this stored information on display 606 and select an item
of for viewing, listening, or other uses via input, which may
take the form of keypad, scroll, or other input device(s) or
combinations thereof. When digital content is selected, the
processor 610 may pass information. The content and PSI/SI
may be passed among functions within the hardware device
106 using the bus 604.

The techniques provided by the embodiments herein may
be implemented on an integrated circuit chip (not shown).
The chip design is created in a graphical computer program-
ming language, and stored in a computer storage medium
(such as a disk, tape, physical hard drive, or virtual hard drive
such as in a storage access network). If the designer does not
fabricate chips or the photolithographic masks used to fabri-
cate chips, the designer transmits the resulting design by
physical means (e.g., by providing a copy of the storage
medium storing the design) or electronically (e.g., through
the Internet) to such entities, directly or indirectly.

The stored design is then converted into the appropriate
format (e.g., GDSII) for the fabrication of photolithographic
masks, which typically include multiple copies of the chip
design in question that are to be formed on a wafer. The
photolithographic masks are utilized to define areas of the
wafer (and/or the layers thereon) to be etched or otherwise
processed.

The resulting integrated circuit chips can be distributed by
the fabricator in raw wafer form (that is, as a single wafer that
has multiple unpackaged chips), as a bare die, or in a pack-
aged form. In the latter case the chip is mounted in a single
chip package (such as a plastic carrier, with leads that are
affixed to a motherboard or other higher level carrier) or in a

10

15

20

25

30

35

40

45

50

55

60

65

10

multichip package (such as a ceramic carrier that has either or
both surface interconnections or buried interconnections).

In any case the chip is then integrated with other chips,
discrete circuit elements, and/or other signal processing
devices as part of either (a) an intermediate content, such as a
motherboard, or (b) an end content. The end content can be
any content that includes integrated circuit chips, ranging
from toys and other low-end applications to advanced com-
puter contents having a display, a keyboard or other input
device, and a central processor.

The embodiments herein can take the form of an entirely
hardware embodiment, an entirely software embodiment or
an embodiment including both hardware and software ele-
ments. The embodiments that are implemented in software
include but are not limited to, firmware, resident software,
microcode, etc.

Furthermore, the embodiments herein can take the form of
a computer program content accessible from a computer-
usable or computer-readable medium providing program
code for use by or in connection with a computer or any
instruction execution system. For the purposes of this
description, a computer-usable or computer readable medium
can be any apparatus that can comprise, store, communicate,
propagate, or transport the program for use by or in connec-
tion with the instruction execution system, apparatus, or
device.

The medium can be an electronic, magnetic, optical, elec-
tromagnetic, infrared, or semiconductor system (or apparatus
ordevice) or a propagation medium. Examples of'a computer-
readable medium include a semiconductor or solid state
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), aread-only memory (ROM),
arigid magnetic disk and an optical disk. Current examples of
optical disks include compact disk-read only memory (CD-
ROM), compact disk-read/write (CD-R/W) and DVD.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output (VO) devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control-
lers. Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modem and Ethernet cards are just a few of the currently
available types of network adapters.

A representative hardware environment for practicing the
embodiments herein is depicted in FIG. 7. This schematic
drawing illustrates a hardware configuration of an informa-
tion handling/computer system in accordance with the
embodiments herein. The system comprises at least one pro-
cessor or central processing unit (CPU) 10. The CPUs 10 are
interconnected via system bus 12 to various devices such as a
random access memory (RAM) 14, read-only memory
(ROM) 16, and an input/output (I/0O) adapter 18. The 1/O
adapter 18 can connect to peripheral devices, such as disk
units 11 and tape drives 13, or other program storage devices
that are readable by the system. The system can read the

US 9,058,184 B2

11

inventive instructions on the program storage devices and
follow these instructions to execute the methodology of the
embodiments herein.

The system further includes a user interface adapter 19 that
connects a keyboard 15, mouse 17, speaker 24, microphone
22, and/or other user interface devices such as a touch screen
device (not shown) to the bus 12 to gather user input. Addi-
tionally, a communication adapter 20 connects the bus 12 to a
data processing network 25, and a display adapter 21 con-
nects the bus 12 to a display device 23 which may be embod-
ied as an output device such as a monitor, printer, or trans-
mitter, for example.

The device driver generation tool 104 eliminates the need
to worry about getting driver written or synthesized exter-
nally by procuring a tool. When the RTE boots up automati-
cally the driver gets synthesized and deployed. During the
synthesis-deployment phase, the device driver generation
tool 104 attempts auto-correction to fix any errors that are
identified as part of device driver validation. The device pro-
gramming specification (DPS) is embedded in the hardware
device and the run time specification (RTS) is embedded in
the run time environment. Hence, information needed for
generating the device driver that is present in the operating
system and in the hardware device. This scenario enables an
end user (e.g., a customer or a person of ordinary skill in the
art) to generate a device driver for the hardware device 106
using the device driver generation tool 104 (which may be
executed in the computing device 102). This further elimi-
nates the need of downloading the device driver from the
internet. The ability of the device driver generation tool to
attempt for auto-correction eliminates the need of user inter-
vention to correct any errors or may provide an indication to
manually correct the errors. The device driver generation tool
further generates report indicating a quality of the device
driver. The user gets user manual regarding the APIs provided
by the device driver thus helping out in application develop-
ment. This tool eases the process both in terms of effort and
time for porting operating systems on a platform since now
the porting has to be done only for the processor and all the
drivers will be automatically generated.

The foregoing description of the specific embodiments will
so fully reveal the general nature of the embodiments herein
that others can, by applying current knowledge, readily
modify and/or adapt for various applications such specific
embodiments without departing from the generic concept,
and, therefore, such adaptations and modifications should and
are intended to be comprehended within the meaning and
range of equivalents of the disclosed embodiments. It is to be
understood that the phraseology or terminology employed
herein is for the purpose of description and not of limitation.
Therefore, while the embodiments herein have been
described in terms of preferred embodiments, those skilled in
the art will recognize that the embodiments herein can be
practiced with modification within the spirit and scope of the
appended claims.

What is claimed is:
1. A method of generating and validating a device driver for
a hardware device, said method comprising:

(1) dynamically querying said hardware device for a device
programming specification;

(i) dynamically querying a run time environment for a run
time specification;

(iii) obtaining said device programming specification that
is specific to said hardware device;

(iv) obtaining said run time specification that is specific to
said hardware device and said run time environment;

15

20

25

30

35

40

45

50

55

60

65

12

(v) dynamically synthesizing a device driver, by a device
driver generation tool to obtain a synthesized device
driver, wherein said device driver is specific to said
hardware device and is generated based on said device
programming specification and said run time specifica-
tion;

(vi) automatically testing, by said device driver generation
tool, said synthesized device driver based on a device
class of said hardware device; and

(vii) automatically evaluating, by said device driver gen-
eration tool, at least one of: a performance of said syn-
thesized driver with respect to standard performance
parameters for said device class of said hardware device
for validating functionality of said synthesized device
driver and a quality of said synthesized device driver
based on at least one of (a) a size of instructions associ-
ated with said device programming specification and
said run time specification, and (b) a performance of'said
instructions.

2. The method of claim 1, further comprising regenerating
said synthesized device driver until no further errors are
detected.

3. The method of claim 1, further comprising generating a
quality report of said synthesized device driver that is specific
to said hardware device.

4. The method of claim 1, wherein said device program-
ming specification is stored in said hardware device, and
wherein said run time specification is stored in said run time
environment of said computing device.

5. The method of claim 1, further comprising obtaining a
device ID and a vendor ID that is specific to said hardware
device.

6. The method of claim 5, further comprising obtaining a
storage location of (a) said device programming specification
based on said device ID and said vendor ID that is specific to
said hardware device, and (b) said run time specification
based on said hardware device and said run time environment.

7. The method of claim 6, further comprising obtaining (a)
said device programming specification, and (b) said run time
specification from an external storage device that is commu-
nicating with said computing device.

8. The method of claim 1, further comprising providing at
least one uniform resource locator for downloading said
device programming specification.

9. The method of claim 1, wherein said device program-
ming specification and said run time specification are stored
in at least one of (i) said computing device, (ii) said external
storage device that is connected to said computing device, and
(iii) a remote server that is in communication with said com-
puting device.

10. A system for generating and validating a device driver
for a hardware device, said system comprising:

(1) a computing device that comprises (a) at least one of (i)

an operating system and (ii) a run time environment;

(b) a device driver generation tool that generates said
device driver for said hardware device;

(c) amemory unit that stores (a) a database, and (b) a set of
instructions; and

(d) a processor that executes said set of instructions com-
prising:

(1) dynamically querying said hardware device for a device
programming specification;

(i1) dynamically querying a run time environment for a run
time specification;

(iii) obtaining said device programming specification that
is specific to said hardware device;

US 9,058,184 B2

13

(iv) obtaining said run time specification that is specific to
said hardware device and said run time environment;

(v) dynamically synthesizing a device driver by said device
driver generation tool to obtain a synthesized device
driver, wherein said device driver is specific to said
hardware device and is generated based on said device
programming specification and said run time specifica-
tion;

(vi) automatically testing, by said device driver generation
tool said synthesized device driver based on a device
class of said hardware device; and

(vil) automatically evaluating, by said device driver gen-
eration tool, at least one of: a performance of said syn-
thesized driver with respect to standard performance
parameters for said device class of said hardware device
for validating functionality of said synthesized device
driver and a quality of said synthesized device driver
based on at least one of (a) a size of instructions associ-
ated with said device programming specification and
said run time specification, and (b) a performance of'said
instructions.

11. The system of claim 10, wherein said set of instructions
further comprises regenerating said synthesized device driver
until no further errors are detected.

12. The system of claim 10, wherein said set of instructions
further comprises generating a quality report of said synthe-
sized device driver that is specific to said hardware device.

13. The system of claim 10, wherein said device program-
ming specification is stored in said hardware device, and
wherein said run time specification is stored in said run time
environment of said computing device.

14. The system of claim 10, wherein said set of instructions
further comprises obtaining a storage location of (a) said
device programming specification based on a device ID and a
vendor ID that is specific to said hardware device that are
obtained from a configuration file, and (b) said run time
specification based on said hardware device and said run time
environment.

15. The system of claim 14, wherein said set of instructions
further comprises obtaining

(a) said device programming specification, and (b) said run
time specification from an external storage device that is
in communication with said computing device.

16. The system of claim 10, wherein said set of instructions
further comprises providing at least one uniform resource
locator for downloading said device programming specifica-
tion.

17. The system of claim 10, wherein said device program-
ming specification and said run time specification are stored
in at least one of (i) said computing device, (ii) said external
storage device that is connected to said computing device, and
(iii) a remote server that is in communication with said com-
puting device.

18. A method of generating and validating a device driver
for a hardware device, said method comprising:

(1) activating a boot code for a computing device, wherein
said computing device comprises at least one of (i) an
operating system, and (ii) a run time environment;

(ii) obtaining (a) information associated with at least one
hardware device that is connected to said computing

5

10

15

20

25

30

35

40

45

50

55

14

device, and (b) information associated with a hardware
device for which a device driver is not present in said run
time environment;

(iii) obtaining a device ID, and a vendor ID from a con-
figuration file;

(iv) obtaining a storage location of (a) a device program-
ming specification, and (b) a run time specification;

(v) dynamically querying (i) said hardware device for said
device programming specification, and (ii) said run time
environment for said run time specification;

(vi) obtaining said device programming specification that
is specific to said hardware device;

(vii) obtaining said run time specification that is specific to
said hardware device and said run time environment;
(viil) dynamically synthesizing a device driver, by a device
driver generation tool, to obtain a synthesized device
driver, wherein said device driver is specific to said
hardware device and is generated based on said device
programming specification and said run time specifica-

tion;

(ix) testing, by said device driver generation tool, said
synthesized device driver based on a device class of said
hardware device; and

(x) evaluating, by said device driver generation tool, at
least one of: a performance of said synthesized driver
with respect to standard performance parameters for
said device class of said hardware device for validating
functionality of said synthesized device driver and a
quality of said synthesized device driver based on at least
one of (a) a size of instructions associated with said
device programming specification and said run time
specification, and (b) a performance of said instructions.

19. A method of generating and validating a device driver

for a hardware device, said method comprising:

(1) dynamically querying said hardware device for a device
programming specification;

(i1) dynamically querying a run time environment for a run
time specification;

(iii) obtaining said device programming specification that
is specific to said hardware device;

(iv) obtaining said run time specification that is specific to
said hardware device and said run time environment;
and

(v) dynamically synthesizing a device driver, by a device
driver generation tool to obtain a synthesized device
driver, wherein said device driver is specific to said
hardware device and is generated based on said device
programming specification and said run time specifica-
tion; and

(vi) automatically evaluating, by said device driver genera-
tion tool, at least one of: a performance of said synthe-
sized driver with respect to standard performance
parameters for said device class of said hardware device
for validating functionality of said synthesized device
driver and a quality of said synthesized device driver
based on at least one of (a) a size of instructions associ-
ated with said device programming specification and
said run time specification, and (b) a performance of'said
instructions.

